extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C22xDic3) = C2xC60.C4 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 240 | | C10.1(C2^2xDic3) | 480,1060 |
C10.2(C22xDic3) = C2xC12.F5 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 240 | | C10.2(C2^2xDic3) | 480,1061 |
C10.3(C22xDic3) = C60.59(C2xC4) | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | 4 | C10.3(C2^2xDic3) | 480,1062 |
C10.4(C22xDic3) = C2xC4xC3:F5 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | | C10.4(C2^2xDic3) | 480,1063 |
C10.5(C22xDic3) = C2xC60:C4 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | | C10.5(C2^2xDic3) | 480,1064 |
C10.6(C22xDic3) = (C2xC12):6F5 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | 4 | C10.6(C2^2xDic3) | 480,1065 |
C10.7(C22xDic3) = Dic10.Dic3 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 240 | 8 | C10.7(C2^2xDic3) | 480,1066 |
C10.8(C22xDic3) = D4xC3:F5 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 60 | 8 | C10.8(C2^2xDic3) | 480,1067 |
C10.9(C22xDic3) = D20.Dic3 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 240 | 8 | C10.9(C2^2xDic3) | 480,1068 |
C10.10(C22xDic3) = Q8xC3:F5 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | 8 | C10.10(C2^2xDic3) | 480,1069 |
C10.11(C22xDic3) = C22xC15:C8 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 480 | | C10.11(C2^2xDic3) | 480,1070 |
C10.12(C22xDic3) = C2xC15:8M4(2) | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 240 | | C10.12(C2^2xDic3) | 480,1071 |
C10.13(C22xDic3) = C2xD10.D6 | φ: C22xDic3/C2xC6 → C4 ⊆ Aut C10 | 120 | | C10.13(C2^2xDic3) | 480,1072 |
C10.14(C22xDic3) = C2xD5xC3:C8 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.14(C2^2xDic3) | 480,357 |
C10.15(C22xDic3) = D5xC4.Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 120 | 4 | C10.15(C2^2xDic3) | 480,358 |
C10.16(C22xDic3) = D20.3Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | 4 | C10.16(C2^2xDic3) | 480,359 |
C10.17(C22xDic3) = D20.2Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | 4 | C10.17(C2^2xDic3) | 480,360 |
C10.18(C22xDic3) = C2xC20.32D6 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.18(C2^2xDic3) | 480,369 |
C10.19(C22xDic3) = Dic3xDic10 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.19(C2^2xDic3) | 480,406 |
C10.20(C22xDic3) = Dic15:6Q8 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.20(C2^2xDic3) | 480,407 |
C10.21(C22xDic3) = (D5xC12):C4 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.21(C2^2xDic3) | 480,433 |
C10.22(C22xDic3) = (C4xD5):Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.22(C2^2xDic3) | 480,434 |
C10.23(C22xDic3) = C4xD5xDic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.23(C2^2xDic3) | 480,467 |
C10.24(C22xDic3) = D5xC4:Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.24(C2^2xDic3) | 480,488 |
C10.25(C22xDic3) = Dic3xD20 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.25(C2^2xDic3) | 480,501 |
C10.26(C22xDic3) = D20:8Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.26(C2^2xDic3) | 480,510 |
C10.27(C22xDic3) = C2xDic3xDic5 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.27(C2^2xDic3) | 480,603 |
C10.28(C22xDic3) = (C6xDic5):7C4 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.28(C2^2xDic3) | 480,604 |
C10.29(C22xDic3) = C2xD10:Dic3 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.29(C2^2xDic3) | 480,611 |
C10.30(C22xDic3) = C2xC30.Q8 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.30(C2^2xDic3) | 480,617 |
C10.31(C22xDic3) = D5xC6.D4 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 120 | | C10.31(C2^2xDic3) | 480,623 |
C10.32(C22xDic3) = Dic3xC5:D4 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.32(C2^2xDic3) | 480,629 |
C10.33(C22xDic3) = Dic15:16D4 | φ: C22xDic3/C2xDic3 → C2 ⊆ Aut C10 | 240 | | C10.33(C2^2xDic3) | 480,635 |
C10.34(C22xDic3) = C22xC15:3C8 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 480 | | C10.34(C2^2xDic3) | 480,885 |
C10.35(C22xDic3) = C2xC60.7C4 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 240 | | C10.35(C2^2xDic3) | 480,886 |
C10.36(C22xDic3) = C2xC4xDic15 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 480 | | C10.36(C2^2xDic3) | 480,887 |
C10.37(C22xDic3) = C2xC60:5C4 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 480 | | C10.37(C2^2xDic3) | 480,890 |
C10.38(C22xDic3) = C23.26D30 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 240 | | C10.38(C2^2xDic3) | 480,891 |
C10.39(C22xDic3) = D4xDic15 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 240 | | C10.39(C2^2xDic3) | 480,899 |
C10.40(C22xDic3) = Q8xDic15 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 480 | | C10.40(C2^2xDic3) | 480,910 |
C10.41(C22xDic3) = D4.Dic15 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 240 | 4 | C10.41(C2^2xDic3) | 480,913 |
C10.42(C22xDic3) = C2xC30.38D4 | φ: C22xDic3/C22xC6 → C2 ⊆ Aut C10 | 240 | | C10.42(C2^2xDic3) | 480,917 |
C10.43(C22xDic3) = C2xC10xC3:C8 | central extension (φ=1) | 480 | | C10.43(C2^2xDic3) | 480,799 |
C10.44(C22xDic3) = C10xC4.Dic3 | central extension (φ=1) | 240 | | C10.44(C2^2xDic3) | 480,800 |
C10.45(C22xDic3) = Dic3xC2xC20 | central extension (φ=1) | 480 | | C10.45(C2^2xDic3) | 480,801 |
C10.46(C22xDic3) = C10xC4:Dic3 | central extension (φ=1) | 480 | | C10.46(C2^2xDic3) | 480,804 |
C10.47(C22xDic3) = C5xC23.26D6 | central extension (φ=1) | 240 | | C10.47(C2^2xDic3) | 480,805 |
C10.48(C22xDic3) = C5xD4xDic3 | central extension (φ=1) | 240 | | C10.48(C2^2xDic3) | 480,813 |
C10.49(C22xDic3) = C5xQ8xDic3 | central extension (φ=1) | 480 | | C10.49(C2^2xDic3) | 480,824 |
C10.50(C22xDic3) = C5xD4.Dic3 | central extension (φ=1) | 240 | 4 | C10.50(C2^2xDic3) | 480,827 |
C10.51(C22xDic3) = C10xC6.D4 | central extension (φ=1) | 240 | | C10.51(C2^2xDic3) | 480,831 |